Package: bmscstan 1.2.1.0

Michele Scandola

bmscstan: Bayesian Multilevel Single Case Models using 'Stan'

Analyse single case analyses against a control group. Its purpose is to provide a flexible, with good power and low first type error approach that can manage at the same time controls' and patient's data. The use of Bayesian statistics allows to test both the alternative and null hypothesis. Scandola, M., & Romano, D. (2020, August 3). <doi:10.31234/osf.io/sajdq> Scandola, M., & Romano, D. (2021). <doi:10.1016/j.neuropsychologia.2021.107834>.

Authors:Michele Scandola [aut, cre]

bmscstan_1.2.1.0.tar.gz
bmscstan_1.2.1.0.zip(r-4.5)bmscstan_1.2.1.0.zip(r-4.4)bmscstan_1.2.1.0.zip(r-4.3)
bmscstan_1.2.1.0.tgz(r-4.4-any)bmscstan_1.2.1.0.tgz(r-4.3-any)
bmscstan_1.2.1.0.tar.gz(r-4.5-noble)bmscstan_1.2.1.0.tar.gz(r-4.4-noble)
bmscstan_1.2.1.0.tgz(r-4.4-emscripten)bmscstan_1.2.1.0.tgz(r-4.3-emscripten)
bmscstan.pdf |bmscstan.html
bmscstan/json (API)

# Install 'bmscstan' in R:
install.packages('bmscstan', repos = c('https://michelescandola.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/michelescandola/bmscstan/issues

Datasets:
  • data.ctrl - Data from a control group of 16 participants
  • data.pt - Data from a Single Case with brachial plexious lesion

On CRAN:

single-case-analysis

4.40 score 5 stars 3 scripts 270 downloads 11 exports 62 dependencies

Last updated 2 years agofrom:368cb7e24b. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winNOTENov 03 2024
R-4.5-linuxNOTENov 03 2024
R-4.4-winNOTENov 03 2024
R-4.4-macNOTENov 03 2024
R-4.3-winOKNov 03 2024
R-4.3-macOKNov 03 2024

Exports:BMSCBMSC_looBMSC_loo_compareBMSC_mcse_looBMSC_pareto_k_idsBMSC_pareto_k_influence_valuesBMSC_pareto_k_tableBMSC_pareto_k_valuesBMSC_psis_n_eff_valuesBMSC_waicpairwise.BMSC

Dependencies:abindbackportsbayesplotBHcallrcheckmateclicolorspacedescdistributionaldplyrfansifarvergenericsggplot2ggridgesgluegridExtragtableinlineisobandlabelingLaplacesDemonlatticelifecyclelogsplineloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgbuildpkgconfigplyrposteriorprocessxpsQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstanscalesStanHeadersstringistringrtensorAtibbletidyselectutf8vctrsviridisLitewithr

Fitting Bayesian Multilevel Single Case models using bmscstan

Rendered frombmscstan-use.Rmdusingknitr::rmarkdownon Nov 03 2024.

Last update: 2022-09-04
Started: 2020-08-04

Readme and manuals

Help Manual

Help pageTopics
Fit Bayesian Multilevel Single Case modelsBMSC
loo and waic.BMSC_loo BMSC_waic plot.loo_BMSC print.loo_BMSC print.waic_BMSC
bmscstan wrapper for model comparison.BMSC_loo_compare print.loo_compare_BMSC print.waic_compare_BMSC
bmscstan wrapper for diagnostics for Pareto smoothed importance sampling (PSIS)BMSC_mcse_loo BMSC_pareto_k_ids BMSC_pareto_k_influence_values BMSC_pareto_k_table BMSC_pareto_k_values BMSC_psis_n_eff_values print.mcse_loo_BMSC print.pareto_k_ids_BMSC print.pareto_k_influence_values_BMSC print.pareto_k_table_BMSC print.pareto_k_values_BMSC print.psis_n_eff_values_BMSC
Bayesian Multilevel Single Case models using 'Stan'bmscstan
Data from a control group of 16 participantsdata.ctrl
Data from a Single Case with brachial plexious lesiondata.pt
Pairwise contrastspairwise.BMSC
Plot estimates from a 'BMSC' object.plot.BMSC
Plot estimates from a 'pairwise.BMSC' object.plot.pairwise.BMSC
Posterior predictive check for BMSC objectspp_check.BMSC
Print summaries of Pairwise Bayesian Multilevel Single Case objectsprint.pairwise.BMSC
Print summaries of Bayesian Multilevel Single Case objectsprint.summary.BMSC
Random Effects specification on Bayesian Multilevel Single Case models using 'Stan'randomeffect
Summarizing Bayesian Multilevel Single Case objectssummary.BMSC